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Abstract

Purpose – To generalize the traditional 2nd order stochastic perturbation technique for input
random variables and fields and to demonstrate for flow problems.

Design/methodology/approach – The methodology is based on an n-th order expansion
(perturbation) for input random parameters and state functions around their expected value to
recover probabilistic moments of the response. A finite element formulation permits stochastic
simulations on irregular meshes for practical applications.

Findings – The methodology permits approximation of expected values and covariances of
quantities such as the fluid pressure and flow velocity using both symbolic and discrete FEM
computations. It is applied to inviscid irrotational flow, Poiseulle flow and viscous Couette flow with
randomly perturbed boundary conditions, channel height and fluid viscosity to illustrate the scheme.

Research limitations/implications – The focus of the present work is on the basic concepts as a
foundation for extension to engineering applications. The formulation for the viscous incompressible
problem can be implemented by extending a 3D viscous primitive variable finite element code as
outlined in the paper. For the case where the physical parameters are temperature dependent this will
necessitate solution of highly non-linear stochastic differential equations.

Practical implications – Techniques presented here provide an efficient approach for numerical
analyses of heat transfer and fluid flow problems, where input design parameters and/or physical
quantities may have small random fluctuations. Such an analysis provides a basis for stochastic
computational reliability analysis.

Originality/value – The mathematical formulation and computational implementation of the
generalized perturbation-based stochastic finite element method (SFEM) is the main contribution of
the paper.

Keywords Flow, Fluids, Finite element analysis, Stochastic processes

Paper type Research paper

1. Introduction
Perturbation techniques have been extensively used in applied mathematics and
particularly for problems in fluid mechanics. In fact, the ideas of boundary-layer
behavior for singular perturbation theory and matched asymptotics have their origin
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in the pioneering work of Prandtl (1904) for flow in a viscous boundary-layer adjacent
to a wall. In this case, scaling and inspectional analysis led to a significant model
reduction from a full viscous flow equation system to the simpler boundary-layer
equations. Prandtl’s boundary-layer equations have subsequently been derived and
analyzed more formally using singular perturbation theory and matched asymptotics.

Regular perturbation techniques are simpler than singular perturbation methods,
and also have been utilized to advantage in model simplification. For instance, Lighthill
(1954) studied potential flow in the region above a “wavy wall”. The shape of the wall in
Lighthill’s example corresponded to a sinusoidal wave of very small amplitude 1 relative
to the wavelength. Expanding the potential f(x, y, 1) in terms of the wall amplitude
parameter, yields a sequence of Poisson problems for the respective expansion
potentials, all posed on the upper half-plane with “flat” boundary y ¼ 0 and admitting
successive analytic solutions. In this case, the regular perturbation expansion leads to
domain simplification rather than simplification of the governing equation. Similar
ideas have been exploited in thin airfoil theory. In an even earlier example, Rayleigh
(1916) developed a regular perturbation expansion technique for subsonic 2D potential
flow. Here, conservation of mass together with the Bernoulli relation lead to the
non-linear full potential equation, and the problem can be recast after scaling so that
the incident Mach number M1 enters explicitly as a small parameter 1 ¼ M 2

1 in the
non-linear equation. A perturbation expansion of the potential or stream function
solution was utilized to obtain a 1st order compressibility correction in the form of an
analytic solution for compressible flow past a cylinder in an infinite stream.

Of course, analytic solutions are possible only for relatively simple domains and
governing equations but the perturbation approach can also be used in conjunction
with numerical methods. For example, Carey (1975) developed a combined
perturbation and variational formulation for the subsonic potential flow problem
class studied by Rayleigh. The objective of the present work is an analogous extension
of this idea in the following sense: we combine the concepts of regular perturbation
techniques and variational finite element methods with stochastic moment approaches
to treat uncertainty in inflow or wall boundary conditions, in parameters of the
equations, in profile shape and so on.

Stochastic effects connected with random variations in data are becoming
increasingly important considerations in a computer simulation for engineering
analysis and design. Techniques are being implemented to determine results in the form
of mean values and standard deviations of solution variables as well as physical
parameters determined from the simulations. These ideas are more extensively
developed in structural dynamics because of the interest in analysis of random
vibrations. At present, several different probabilistic schemes have been formulated
including, for instance, the stochastic finite element method (SFEM) (Kamiński, 2001a, b,
2003; Kleiber and Hien, 1992), stochastic spectral approaches (Ghanem and Spanos,
1991) and various Monte-Carlo simulation (MCS) techniques (Hurtado and Barbat, 1998).

Moreover, the interest in quantifying errors in simulation has expanded from a
posteriori analysis of discretization errors to embrace errors due to modeling
approximations and most recently to consider the influence of uncertainty in data. The
present work has some bearing on this latter point. The situation is again analogous to
that of regular perturbation theory where the 1st order perturbation correction
provides an indicator of the modeling error if the simpler 0 order model were chosen.
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Likewise in the present context the higher order stochastic perturbation terms play an
analogous role and give an indication of the relative impact of uncertainty in the data
on the output. Furthermore, one may be interested in a particular result such as the
expectation and variance of the output at a point and wish to compare or calibrate the
order of errors due to discretization, modeling and uncertainty.

The present paper considers stochastic fluid flow problems in which certain input
flow parameters such as material parameters, boundary data or boundary shapes enter
as random fields defined by their first two probabilistic moments. In the 2nd order
method all state functions in the variational formulation are expanded by use of up to
2nd order Taylor series perturbation expansions with respect to some input random
parameters of the flow. As a result, the expected values and cross-covariances of any
state function (fluid velocities or temperatures, for instance) may be obtained. This
method is, at present, the most efficient choice. However, it imposes limitations on the
coefficients of variation for the input random fields due to the nature of the
perturbation assumptions. Because of these limitations, the stochastic convergence of
the perturbation method is analyzed using simple symbolic computations to compare
the 2nd, 4th and 6th order approximation of the expected values against the
deterministic solution for a simple test problem with the random output being
inversion of the Gaussian random variable. This study confirms that, as widely
discussed in the literature, convergence of the perturbation technique strongly depends
on the transformation type between the output and input random variables. We begin
with a formal derivation of the stochastic 2nd order moment variational finite element
method that is the main goal of this present study and illustrates the ideas for a class of
flows of sufficient complexity. In the supporting numerical studies we give several
simple illustrative finite element examples corresponding to channel and pipe fully
developed flow (pseudo 1D). First we consider Couette flow with zero pressure gradient
with random input wall velocity amplitude, where a trivial analytic solution with
expectations and variances is easily determined for comparison and validation of the
SFEM approach. Then we investigate cases where the random variable is the viscosity
and channel width H, respectively, and consider the case with adverse pressure
gradient. The analogous problem for similar random input data in pipe flow is also
presented. Analytic and SFEM solutions are compared for a representative case.
Convergence of the stochastic perturbation scheme is also investigated numerically.
Finally, we consider a 2D analytic example corresponding to a potential flow problem
analogous to the “wavy wall” problem studied by Lighthill but for a flow past a
“cylinder” with random Gaussian shape perturbation.

2. Mathematical model
2.1 Variational formulation for deterministic fluid flow
To demonstrate the basic approach in an application setting of general interest, let us
consider viscous incompressible flow of a Newtonian fluid in region V. The equations
of momentum and continuity as well as Stokes constitutive relation can be written
as (White, 1986)

r
›vi

›t
þ vi; jvj

� �
¼ sij; j þ f B

i ; ð1Þ
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vi;i ¼ 0; ð2Þ

sij ¼ 2pdij þ 2m1ij; ð3Þ

where

1ij ¼
1

2
ðvi; j þ vj;iÞ: ð4Þ

The state variables vi, 1ij, sij denote velocity, strain and stress tensor components,
respectively, and f B

i are the body force components. The variables r, p, m denote mass
density, pressure, and viscosity, respectively.

Typical boundary conditions for these equations are:

vi ¼ v̂i ; x [ ›Vv ð5Þ

for fluid velocities, and

sijnj ¼ f̂i ; x [ ›Vs; ð6Þ

for surface tractions, on boundary sub-regions ›VV and ›Vs, respectively.
The weak variational formulation of the above problem follows on integration by

parts in the corresponding weighted residual integral statement with stress boundary
conditions included as natural boundary conditions and velocity boundary conditions
being essential conditions. More specifically, multiplying equation (1) by virtual
velocity component variation dvi and applying the Gauss divergence theorem to the
integral involving the stress tensor, we haveZ

V

dvirð_vi þ vi; jvjÞdx þ

Z
V

d1ijsijdx ¼

Z
V

dvif
B
i dx þ

Z
›Vs

dvif̂ids ð7Þ

where vi satisfy equation (5) on ›VV and sijnj has been replaced by f̂i in the integral on
the traction boundary ›Vs. Similarly, introducing a pressure variation dp as a trial
function in the weighted integral for equation (2) we haveZ

V

dpvi;i dx ¼ 0 ð8Þ

The fluid flow problem is then to solve equations (7) and (8) subject to appropriate
initial conditions with sij and 1ij given by equations (3) and (4) and specified vi on ›VV

for arbitrary admissible test functions dvi, dp having dvi ¼ 0 on ›VV.
We now introduce the 2nd order perturbation second probabilistic central moment

technique (Kamiński, 2001a, b; Kleiber and Hien, 1992) to formulate the corresponding
stochastic fluid flow problem.

2.2 Stochastic perturbation approach
For illustrative purposes, let us assume that material parameters r, m as well as
boundary conditions may be input Gaussian random fields of the problem and are
defined uniquely by their expected values and covariances. (In the supporting
numerical studies we also consider a case when the boundary shape is similarly
specified using a random field.) Let us denote the corresponding random field vector of
the problem by br(xi), with probability density functions (PDF) p(br) and p(br, bs),
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respectively, for r; s ¼ 1; . . . ;R; where R represents the total number of different input
random fields (Kleiber and Hien, 1992; Vanmarcke, 1983). Then, the first two
probabilistic moments of br(xi) are the expectation

E½br� ; b0
r ¼

Z þ1

21

brpðbrÞ dbr; ð9Þ

and covariance

Covðbr ; bsÞ ; Srs ¼

Z þ1

21

br 2 b0
r

h i
bs 2 b0

s

h i
pðbr ; bsÞ dbr dbs: ð10Þ

The coefficients of variation of the random input are given by the formula

aðbrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbrÞ

p
E½br�

: ð11Þ

The basic idea of the stochastic perturbation approach follows the classical
perturbation expansion idea and is to approximate all input variables and the state
functions of the stochastic problem via truncated Taylor series about their spatial
expectations in terms of a parameter c . 0: However, here the small parameter c
corresponds to a random fluctuation. For example, in the case of random fluid density
r and viscosity m, we write the n-th order truncated expression

r ¼ r 0 þ cr ;rDbr þ
1

2
c2r ;rsDbrDbs þ · · · þ

1

n!
cnr ;nðDbÞn; ð12Þ

m ¼ m 0 þ cm ;rDbr þ
1

2
c 2m ;rsDbrDbs þ · · · þ

1

n!
cnm ;nðDbÞn; ð13Þ

where

cDbr ¼ c br 2 b0
r

� �
ð14Þ

is the first variation of br about its expected value b0
r

c2DbrDbs ¼ c 2 br 2 b0
r

� �
bs 2 b0

s

� �
ð15Þ

is the second variation of br, bs about b0
r and b0

s ; respectively, and the n-th order
variation can be expressed as

cnðDbÞn ¼ cn br 2 b0
r

� �n

: ð16Þ

The symbol ( · )0 represents the value of the function ( · ) taken at the expectations b0
r ;

while ( · ),r and ( · ),rs denote the first and the second partial derivatives with respect to br

evaluated at b0
r (other problem variables such as boundary conditions and boundary

shape may also be subjected to random variations). The state variables vi and p are
similarly expanded to equations (12) and (13)

vi ¼ v0
i þ cv;ri Dbr þ

1

2
c2v;rsi DbrDbs þ · · · þ

1

n!
cnv;ni ðDbÞn; ð17Þ
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p ¼ p 0 þ cp ;rDbr þ
1

2
c 2p ;rsDbrDbs þ . . .þ

1

n!
cnp ;nðDbÞn: ð18Þ

Next, substituting the expansions (12)-(13) and (17)-(18) in variational equations (7) and
(8) and equating terms of the same order, the 0th, 1st and 2nd orders perturbation
equations follow as

. zeroth-order (c 0 terms, one coupled partial differential equation system)Z
V

dvir
0 _v0

i þ v0
i; jv

0
j

� �
dx þ

Z
V

d1ij 2m 010
ij 2 p 0dij

� �
dx

¼

Z
V

dvi f B
i

� �0

dx þ

Z
›Vs

dvi f̂i

� �0

ds;

ð19Þ

Z
V

dpv0
i;idx ¼ 0; ð20Þ

. first-order (c 1 terms, R coupled partial differential equation system, r ¼ 1; . . . ;RÞ :Z
V

dvi r ;r _v0
i þ r 0_v;ri þ r ;rv0

i; jv
0
j þ r 0v;ri; jv

0
j þ r0v0

i; jv
;r
j

� �
dx

þ

Z
V

d1ij 2m ;r10
ij þ 2m 01

;r
ij 2 p ;rdij

� �
dx ¼

Z
V

dvi f B
i

� �;r
dxþ

Z
›Vs

dvi f̂i

� �;r
ds;

ð21ÞZ
V

dpv;ri;idx ¼ 0; ð22Þ

. second-order (c 2 terms, one coupled partial differential equation system):Z
V

dvir
0 _vð2Þi þ vð2Þi;j v0

j þ v0
i;jv

ð2Þ
j

� �
dx þ 2

Z
V

d1ijm
01

ð2Þ
ij dx

¼

Z
V

dvi f B
i

� �;rs
dx þ

Z
›Vs

dvi f̂i

� �;rs
ds

� �
Covðbr; bsÞ

2

Z
V

d1ij 4m ;r1
;s
ij 2 p ;rsdij

� �
dx þ 2

Z
V

dvi r ;r _v;si þ r ;rv;si;jv
0
j

��

þr0v;ri;jv
;s
j þ r ;rv0

i;jv
;s
j

�
dx
o

Covðbr; bsÞ

ð23Þ

Z
V

dpv;rsi;i dx

� �
Covðbr; bsÞ ¼ 0: ð24Þ

As in standard regular perturbation solution techniques (Carey, 1975), the 0th order
velocity and pressure solution from equations (19) and (20) are needed to obtain
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the 1st order approximations from equations (21) and (22) and the 2nd order functions
from equations (23) and (24) are solved in a similar manner from the known lower order
solutions. We can then obtain the first two probabilistic moments of these functions
(Kleiber and Hien, 1992; Vanmarcke, 1983) by applying definitions (9) and (10) to any
state function f ðbr ; tÞ ; {pðbr ; tÞ; vjðbr ; tÞ}: For example, from equation (9) the
expectation is

E½ f ðt;brÞ; br� ¼

Z þ1

21

f ðtÞpðbrÞdbr

¼

Z þ1

21

f 0 þcf ;rDbr þ
1

2
c 2f ;rsDbrDbs þ · · ·þ

1

n!
cnf ;n Dbð Þ

n

� �
pðbrÞdbr

ð25Þ

and the covariance follows similarly from equation (10). If there is high random
dispersion in the input random variable, then terms above 2nd order are negligible, so
the 2nd order approximation ðn ¼ 2Þ is adequate and we have

E½ f ðt; brÞ; br� ¼

Z þ1

21

f ðtÞpðbrÞdbr ¼

Z þ1

21

f 0 þ f ;rDbr þ
1

2
f ;rsDbrDbs

� �
pðbrÞ dbr

¼ 1 £ f 0ðtÞ þ 0 £ f ;rðtÞ þ
1

2
£ f ;rsðtÞS ;rs ¼ f 0ðtÞ þ

1

2
f ð2ÞðtÞ

ð26Þ

where we have set parameter c ¼ 1 (Kleiber and Hien, 1992) and higher order terms
are unnecessary because of high random dispersion of the input random variable. The
general n-th order expansion in equation (25) reduces similarly to

E½ f ðt; brÞ; br� ø 1 £ f 0ðt; brÞ þ
1

2
£ f ;rsðt; brÞ £ Covðbr; bsÞ

þ
1

4!
£ f ;rstuðt; brÞ £ Covðbr; bs; bt; buÞ

þ
1

6!
£ f ;rstuvwðt; brÞ £ Covðbr; bs; bt; bu; bv; bwÞ

¼ f 0ðt; brÞ þ
1

2
f ð2Þðt; brÞ þ

1

4!
f ð4Þðt; brÞ þ

1

6!
f ð6Þðt; brÞ

ð27Þ

where odd order terms are equal to zero for the assumed Gaussian random deviates.
In the case of a single Gaussian input random variable h such as the amplitude of

the input velocity, the general expansion simplifies to

E½ f ðt; hÞ; h;c;m� ¼ f 0ðt; hÞ þ
1

2
c 2 ›

2f

›h 2
m2ðhÞ þ

1

4!
c 4 ›

4f

›h4
m4ðhÞ

þ
1

6!
c 6 ›

6f

›h6
m6ðhÞ þ · · · þ

1

ð2mÞ!
c 2m ›2mf

›h 2m
m2mðhÞ

ð28Þ

with m2m denoting the ordinary probabilistic moment of 2mth order. For Gaussian
variables, all central probabilistic moments can be expressed in terms of variances
(standard deviations s) (Vanmarcke, 1983) as
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m2kþ1ðhÞ ¼ 0;m2kðhÞ ¼ 1 £ 3 £ · · · £ ð2k 2 1Þs 2kðhÞ; k # m ð29Þ

and can be included easily in computational analysis without any further
modifications. For example, for the 6th order expansion this yields

m2ðhÞ ¼ s2ðhÞ ¼ VarðhÞ; m4ðhÞ ¼ 3s 4ðhÞ ¼ 3Var2ðhÞ;

m6ðhÞ ¼ 15s6ðhÞ ¼ 15Var3ðhÞ:
ð30Þ

Using this extension of the random output, a desired efficiency of the expected values
can be achieved by the appropriate choice of m and c corresponding to the input PDF
type, probabilistic moment interrelations, acceptable error of the computations, etc.
This choice can be made by comparative studies with MCSs or theoretical results
obtained by direct symbolic integration (Cornil and Testud, 2001).

A similar treatment to that above leads to the following result for the
cross-correlation of any state function. Recalling equation (10), we have

Cov f xð1Þi ; t
� �

; f xð2Þj ; t
� �� �

¼ f ;r xð1Þi ; t1

� �
f ;s xð2Þj ; t2

� �
S rs ð31Þ

and can be easily extended to higher order formulations. For example, in the 6th order
approximation we have

Covð f ;gÞ¼

Z þ1

21

f 0þDbrf
;rþ

1

2
DbrDbsf

;rsþ
1

3!
DbrDbsDbtf

;rst

�

þ
1

4!
DbrDbsDbtDbuf ; rstuþ

1

5!
DbrDbsDbtDbuDbvf

;rstuv2E½ f �

�
:

£ g 0þDbcg
;cþ

1

2
DbcDbdg ;cdþ

1

3!
DbcDbdDbeg

;cde

� �

þ
1

4!
DbcDbdDbeDbhg ;cdehþ

1

5!
DbcDbdDbeDbhDblg

;cdehl2E½g�

�
pð f ðbÞ;gðbÞÞdb

¼

Z þ1

21

Dbrf
;rþ

1

2
DbrDbsf

; rsþ
1

3!
DbrDbsDbt f

; rstþ
1

4!
DbrDbsDbtDbu f ; rstu

�

þ
1

5!
DbrDbsDbtDbuDbvf

;rstuv

�
Dbcg

;cþ
1

2
DbcDbdg ;cdþ

1

3!
DbcDbdDbeg

;cde

�

þ
1

4!
DbcDbdDbeDbhg ;cdehþ

1

5!
DbcDbdDbeDbhDblg

;cdehl

�
£pð f ðbÞ;gðbÞÞdb

ð32Þ

Taking into account components resulting in up to 6th order perturbations and
eliminating odd order terms (for Gaussian variables), we obtain
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Covð f ; gÞ ¼

Z þ1

21

Dbrf
;rDbcg

;cpð f ðbÞ; gðbÞÞdb

þ

Z þ1

21

1

4
DbrDbsf

;rsDbcDbdg ;cdpð f ðbÞ; gðbÞÞdb

þ

Z þ1

21

Dbrf
;r 1

3!
DbcDbdDbeg

;cdepð f ðbÞ; gðbÞÞdb

þ

Z þ1

21

Dbcg
;c 1

3!
DbrDbsDbtf

;rstpð f ðbÞ; gðbÞÞ db

þ

Z þ1

21

1

3!
DbrDbsDbtf

;rst 1

3!
DbcDbdDbeg

;cdepð f ðbÞ; gðbÞÞ db

þ

Z þ1

21

1

4!
DbcDbdDbeDbhg ;cdeh 1

2
DbrDbsf

;rspð f ðbÞ; gðbÞÞdb

þ

Z þ1

21

1

4!
DbrDbsDbtDbu f ; rstu 1

2
DbcDbdg ;cdpð f ðbÞ; gðbÞÞdb

þ

Z þ1

21

1

5!
DbrDbsDbtDbuDbvf

;rstuvDbcg
;cpð f ðbÞ; gðbÞÞdb

þ

Z þ1

21

1

5!
DbcDbdDbeDbhDblg

;cdehlDbrf
;rp f ðbÞ; gðbÞ
� 	

db

ð33Þ

The first integral above corresponds to the 2nd order perturbation, the next three
complete the 4th order approximation and the remainder needs to be included to achieve
the full 6th order expansion. Then equation (31) can be written more compactly as

Covð f ;gÞ¼Covðbr;bsÞ£ f ;rg ;sþCovðbr;bs;bt;buÞ
1

4
f ;rsg ;tuþ

1

3!
f ;rg ;stuþ

1

3!
f ;rstg ;u

� �

þCovðbr;bs;bt;bu;bv;bwÞ £
1

3!

� �2

f ;rstg ;uvwþ
1

4!
g ;cdeh 1

2
f ;rsþ

1

4!
f ;rstu 1

2
g ;cd

 

þ
1

5!
f ;rstuvg ;wþ

1

5!
g ;rstuvf ;w

�
ð34Þ

and, as in the result summarized previously in equation (27), we can provide the formula
for a 6th order perturbation variance of a variable v in terms of the Gaussian random
input given by U as

VarðvÞ ¼ ðv ;hÞ2 £ m2ðhÞ þ
1

4
ðv ;hhÞ2 þ

2

3!
v ;hv ;hhh

� �
£ m4ðhÞ

þ
1

3!

� �2

ðv ;hhhÞ2 þ
1

4!
v ;hhhhv ;hh þ

2

5!
v ;hhhhhv ;h

 !
£ m6ðhÞ

ð35Þ

Using equation (30), the 2nd order probabilistic moment of the variable v can be
determined as a function of the relevant partial derivatives of v with respect to h as well
as using its expected value and variance. Some validation cases with known analytic
solution are considered later in subsection 4.1.

Of course, one can compute the desired expectations and variances by Monte Carlo
approaches. These involve sampling the random input field and numerous flow
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solutions for this sample data. In contrast to the stochastic MCS method, the 2nd order
perturbation stochastic second moment analysis makes it possible to derive
probabilistic moments of the state functions. The use of a 2nd order second moment
scheme may be effective and more efficient than Monte Carlo simulation. It should be
emphasized, however, that higher order and higher moment approximation is
necessary to calculate the output probabilistic moments from the perturbation-based
solution. In the next section, we develop a Galerkin semidiscrete finite element
formulation of the stochastic 2nd order perturbation equations system (19)-(24) that is
then suitable for practical simulations involving small random field parameters.

3. Stochastic finite element method
3.1 Deterministic discretization
For simple operators and domains the stochastic perturbation systems may in some
cases admit analytic solutions. We consider such cases in the numerical verification
studies later. However, engineering analysis of most problems of practical interest
requires discretization by finite elements or a similar scheme. As an example we
describe the finite element treatment for the Navier Stokes stochastic perturbation
formulation described in the previous section. Introducing a discretization of finite
elements with associated velocity and pressure spaces satisfying the inf-sup stability
criterion, the velocity and pressure expressions have the form

viðxj; tÞ ¼ FaðxjÞVaiðtÞ; pðxj; tÞ ¼ ~FgðxjÞPgðtÞ; i; j ¼ 1; 2; 3; a ¼ 1; . . . ;N ;

g ¼ 1; 2; . . . ;M ;
ð36Þ

where Fa(xj), ~FgðxjÞ are nodal basis functions, while Vai(xj), Pg(xj) denote nodal values
of the velocity and pressure to be computed. Substituting this approximation into the
variational equations (7) and (8), the standard semidiscrete deterministic system can be
conveniently expressed as (Bathe, 1996; Carey and Oden, 1986):

MV
_Vþ ðKmVV þKVV ÞVþ BVPP ¼ RB þ RS; ð37Þ

BT
VPV ¼ 0; ð38Þ

where MV is the mass matrix, KmVV is the contribution from the viscous term, KVV is
the convective term and B, BT correspond to the discrete gradient and divergence
operators and RB and RS correspond to body force and boundary data contributions.
For example, the 2D flow case may be written in matrix notation as

MVk
0 0

MVl
0

symm: 0

2
664

3
775

_Vk

_V l

_P

2
664

3
775þ

KmVkVk
þKVV k

KmV kV l
BVkP

KmVkVl
KmV lV l

þKVVl
BV lP

BT
TVkP BT

TVlP
0

2
6664

3
7775

Vk

V l

P

2
664

3
775

¼

RBk
þRSk

RBl
þRSl

0

2
664

3
775 ð39Þ
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where Vk and Vl are the respectively nodal vectors of horizontal and vertical velocity
components. The above system is assembled in the standard manner from element
matrix and vector contributions (Carey and Oden, 1986). Let Fe and ~Fe denote row
vectors containing the corresponding velocity and pressure bases for element e. Then
the element contributions to the global matrices in equation (39) can be conveniently
expressed in the form:

Me
V k

¼ Me
V l

¼ r

Z
Ve

FeT

Fedx; ð40Þ

Ke
mVkVk

¼

Z
Ve

2mFeT

;k F
e
;k þ mFeT

;l F
e
;l

� �
dx;Ke

mVkVl
¼

Z
Ve

mFeT

;l F
e
;ldx; ð41Þ

Ke
mV lV l

¼

Z
Ve

2mFeT

;l F
e
;l þ mFeT

;k F
e
;k

� �
dx; ð42Þ

Ke
VVk

¼ Ke
VV l

¼ r

Z
Ve

FeT

FeVkF
e
;k þFeT

FeV lF
e
;l

� �
dx; ð43Þ

Ke
VkP ¼ 2

Z
Ve

FeT

;k
~Fedx; Ke

VlP
¼ 2

Z
Ve

FeT

;l
~Fedx; ð44Þ

Re
B ¼

Z
Ve

FeT

fBdx; Re
S ¼

Z
›Ve

FeST

fSdð›xÞ; ð45Þ

where components of the vector fS are defined as

f n ¼ 2p þ 2m
›vn

›n
; f t ¼ m

›vt

›n
þ

›vn

›t

� �
ð46Þ

with vn, vt the normal and tangential boundary velocity components.

3.2 Stochastic finite element discretization
For convenience, let us assume that all input random fields are appropriately
discretized relative to the associated finite element approximation problem, e.g. for the
boundary fields in the later numerical test studies of Section 4 it suffices to use
piecewise constant approximation of the random fields with values at the mid-edge
points of elements on the boundary (with total number ~E). Therefore, each new input
random vector also has ~E components, and the cross-correlation matrix given by
equation (10) is symmetric, positive definite of rank ~E: Furthermore, all partial
derivatives of the state parameters with respect to input random variables are also
determined at the edge mid points.

Following the approach in subsection 2.2, let us represent the random field vector br

by the global vector of element random variables bj, j ¼ 1; 2; . . . ; ~N; ~N ¼ R £ ~E;
where R is the number of different input random fields. Next, as in equations (12) and
(13), a perturbation expansion is employed for the relevant functions and parameters,
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and these expressions are now inserted in the corresponding finite element variational
problems that lead to the expected values E½bj� ; b0

j; as in equation (26). That is, for a
variable v

v ¼ v0 þ cv ;jDbj þ
1

2
c 2v ;jzDbjDbz þ · · · þ

1

n!
cnv ;nðDbÞn; ð47Þ

where cDbj, c
2DbjDbz,. . . are defined as in equations (14)-(16).

Then, the stochastic finite element equations governing the fluid flow are (equations
(19)-(24)): for the 0th order (c 0) terms, one coupled semidiscrete system for P0

gðtÞ
and V 0

iaðtÞ

M0
V
_V0 þ K0

mVV þK0
VV

� �
V0 þK0

VPP
0 ¼ R0

B þ R0
S; ð48Þ

K0
TVPV

0 ¼ 0; ð49Þ

corresponding to the deterministic model in equations (37) and (38) for the 1st order
(c 1) terms, R systems, r ¼ 1; . . . ;R

M0
V
_V;r þ K0

mVV þK0
VV

� �
V;r þK0

VPP
;r ¼ R;r

B þ R;r
S

2M;r
V
_V0 þ K;r

mVV þK;r
VV

� �
V0 þK;r

VPP
0;

ð50Þ

K0
TVPV

;r ¼ 2K;r
TVPV

0; ð51Þ

for the 2nd order (c 2) terms, one system of the form

M0
V
_V;rs þ K0

mVV þK0
VV

� �
V;rs þK0

VPP
;rs ¼ R;rs

B þ R;rs
S

2 M;rs
V
_V0 þ 2M;r

V
_V;s þ K;rs

mVV þK;rs
VV

� �
V0

n o

2 2 K;r
mVV þK;r

VV

� �
V;s þK;rs

VPP
0 þ 2K;r

VPP
;s

n o
ð52Þ

K0
TVPV

;rs ¼ 2 K;rs
TVPV

0 þ 2K;r
TVPV

;s
� 	

: ð53Þ

More generally, we have for the n-th order system

Xn

k¼0

n

k

0
@

1
AMðkÞ

V
_Vðn2kÞ þ

Xn

k¼0

n

k

0
@

1
A KðkÞ

mVV þKðkÞ
VV

� �
Vðn2kÞ

þ
Xn

k¼0

n

k

0
@

1
AKðkÞ

VPP
ðn2kÞ ¼ RðnÞ

B þ RðnÞ
S ;

ð54Þ
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Xn

k¼0

n

k

 !
KðkÞ

TVPV
ðn2kÞ ¼ 0; ð55Þ

Remark. Note that in the classical regular perturbation approaches the coefficient
matrices in the above case may be fixed. It follows that in this situation a single
factorization may be used with successive substitution solves as the right hand sides
change.

Integrating the successive perturbation equations sequentially (or treating sequentially
within a time step), the expected values of the fluid pressures and velocities at any
time t ¼ t can be evaluated for the 2nd order approximation as (equation (26))

E½ f aðtÞ� ¼ f 0
aðtÞ þ

1

2
f ð2Þa ðtÞ ð56Þ

and the corresponding space-time cross-covariance is given by (equation (31))

Covð f aðt1Þ; f bðt2ÞÞ ¼ f ;ja ðt1Þf
;z
b ðt2ÞS

jz
b : ð57Þ

The above formulations complete the description of an n-th order perturbation second
probabilistic moment finite element analysis for viscous incompressible flow. A similar
analysis and formulation can be applied for divergence free spaces and in this case the
pressure terms are not explicitly present. Other simplifications of the system and
resulting formulation follow by simply considering the reduced forms of the equations.
For example, we illustrate the approach for simple Couette flow with random input or
potential flow with random boundary effects in the following section. This permits us to
write down the SFEM contributions in a compact form and explicitly validate the
approach for a case with known analytic solution, from which the analytic expectation
and variance can be calculated for comparison.

4. Numerical studies
Channel and pipe flow with various random fields specified and potential flow with
random variation for the body shape are considered as illustrative test and verification
problems. Both analytical and finite element approximate formulations are computed.
Note that this general approach requires computation of derivatives with respect to the
random variable (equation (28)). This differentiation can be carried out at the code level
or numerically by differencing, or using a symbolic manipulator such as in the MAPLE
implementation employed here. The MAPLE implementation allows us to exploit not
only this symbolic capability but also the statistical utility routine in MAPLE. This
enables relatively easy extension of the technique to higher perturbation order,
convergence analysis for particular probabilistic moments, integration with
FORTRAN codes for FEM programs as well as efficient visualization of the results.

4.1 Channel flow problem
To demonstrate the main ideas and results in a simple possible setting, let us consider
the problem for viscous incompressible flow between parallel plates with separation H.
The flow equations simplify to a linear differential equation (Spurk, 1997; White, 1986)
with the tangential fluid velocity at the upper plate being specified. The analytic
solution to the deterministic problem with specified pressure gradient ð px – 0Þ is
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rnu ¼
y 2

2

›p

›x

� �
þ

y

H
rnU 2

H 2

2

›p

›x

� �� �
; ð58Þ

where n ¼ m=r denotes the kinematic viscosity (Wang et al., 1990; Zaradny, 1993). In
the present study we are interested in the effect of uncertainty in the lid velocity U, the
viscosity, or the channel width H. These respective situations are now considered.

4.1.1 Couette flow validation: random velocity U. Let the tangential velocity U of the
upper plate be the input Gaussian random variable given by its first two probabilistic
moments E[U ], Var(U), respectively. The rest of the constitutive and geometrical
parameters are treated as deterministic. Then, for the simplest case of zero pressure
gradient, the SFEM systems for the 0th, 1st and 2nd order terms reduce to

K0u0 ¼ 0; K0u;r ¼ 2K;ru0; K0uð2Þ ¼ 2ðK;rsu0 þ 2K;ru;sÞS rs: ð59Þ

For this simple validation case we use two linear finite elements between the plates
with nodes 1, 2, 3 at y ¼ 0; y ¼ H=2 and y ¼ H ; respectively, on an arbitrary section.
Then equation (59) simplified to

2m

H

1 21 0

21 2 21

0 21 1

2
664

3
775

0
BB@

1
CCA

0 u0
1

u0
2

u0
3

8>><
>>:

9>>=
>>; ¼

0

0

0

8>><
>>:

9>>=
>>;; ð60Þ

2m

H

1 21 0

21 2 21

0 21 1

2
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3
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0
BB@

1
CCA

0 u;U
1

u;U
2

u;U
3

8>>><
>>>:

9>>>=
>>>;

¼ 2
2m

H

1 21 0

21 2 21

0 21 1

2
664

3
775

0
BB@

1
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;U u0
1

u0
2

u0
3

8>><
>>:

9>>=
>>;; ð61Þ

2m

H

1 21 0

21 2 21

0 21 1

2
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3
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0
BB@

1
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0 u;UU
1

u;UU
2

u;UU
3

8>>><
>>>:

9>>>=
>>>;

¼ 2
2m

H

1 21 0

21 2 21

0 21 1

2
664

3
775

0
BB@

1
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;UU u0
1

u0
2

u0
3

8>><
>>:

9>>=
>>;

2
4m

H

1 21 0

21 2 21

0 21 1

2
664

3
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0
BB@

1
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;U u;U
1

u;U
2

u;U
3

8>>><
>>>:

9>>>=
>>>;
:

ð62Þ

Using equations (54) and (55) together with the relation for the variance (equation (35)),
higher-order contributions can be determined similarly.
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The expectation and variance for centerline nodal velocity u2 with 2nd order model
follow from the solution of equations (60)-(62) as

E½u2� ¼ u0
2 þ

1

2
u;UU

2 VarðU Þ ¼
1

2
E½U � ð63Þ

and

Varðu2Þ ¼ u;U
2 u;U

2 VarðU Þ ¼
1

4
VarðU Þ: ð64Þ

This result can be compared with probabilistic moments derived explicitly from the
analytic solution u ¼ ð y=H ÞU and we have

E½ujy¼H=2� ¼
E½U �

2
; Varðujy¼H=2Þ ¼

VarðU Þ

4
; ð65Þ

which is identical to our SFEM result in equations (63) and (64).
Further, the shear stresses acting on the moving plate are syx ¼ ðm=H ÞU ; which,

for randomly defined velocity of the upper plate as given by its first two probabilistic
moments E [U ] and Var(U), implies

E½syx� ¼
m

H
E½U �; VarðsyxÞ ¼

m 2

H 2
VarðU Þ: ð66Þ

The second moment perturbation approach and finite element model of equations
(60)-(62) lead to the following result:

E½syx� ¼ s 0
yx þ

1

2
s;UU

yx VarðU Þ ¼
m

H
E½U � ð67Þ

VarðsyxÞ ¼ s ;U
yx

� �2

VarðU Þ ¼
m 2

H 2
VarðU Þ; ð68Þ

which again agree with the theoretical result (66). This exact agreement results from
the fact that the probabilistic output random field is a linear function of the input
random parameter and the exact solution to the deterministic problem is in the finite
element state.

4.1.2 Viscosity uncertainty. The situation is more complicated in the case where the
random variation is in the viscosity. The symbolic MAPLE code is applied as before
but now with H ¼ 2:0; E½m� ¼ 1:0; U ¼ 10:0:

Since a Gaussian input is considered once again, all central probabilistic moments
can be recovered from its expected value and coefficient of variation (being a design
variable in this study) using the formulas (29) and (30). This problem is a good test case
of probabilistic convergence because, for the n-th order approach, it consists of n
non-trivial algebraic systems

K0u0¼0; K0u;m¼2K;mu0; K 0u ;mm¼22K ;mu ;m; ...;K0 ›
nu

›mn
¼2nK;m ›

n21u

›mn21
; ð69Þ

and, therefore, each new perturbation order introduces new components into the
probabilistic output. This convergence study with increasing order is an important
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aspect of the present work. Recall also that any higher order derivative of the system
matrix with respect to fluid viscosity is equal to 0. For each case we graph the fluid
velocity along the horizontal top channel section as a function of two independent
variables – the perturbation order and the coefficient of variation of the random input.
Note that it is also possible to compute and to analyze probabilistic moments of higher
order. Once again the symbolic capability of the MAPLE implementation facilitates
such computations. The expected values of the maximum fluid velocity at y¼H=2 for
2nd, 4th, 6th, 8th and 10th order stochastic finite element approximation are collected
in Figure 1 as functions of the perturbation parameter c (left horizontal axis – psi ) in
the interval (0.8, 1.2) and the input coefficient of variation for the fluid viscosity
(“alfami” – horizontal axis at right), from 0.0 (as for deterministic test) to about 0.3.
Results for standard deviations are shown in Figure 2, while the output coefficient of
variance is shown in Figure 3. It is clear from these graphs that the convergence of the
SFEM strongly depends on the input coefficient of variation. For smaller values like 0.1
the 2nd order method may be sufficient, but the maximum value of 0.3 needs at least a
10th order approximation for similar accuracy.

The use of symbolic calculus also allows us to recover polynomial expressions for
any moment (which is not possible in standard FEM computations). Using the SFEM
approach, polynomial expressions for the expected values and standard deviations in

Figure 2.
Standard deviations of
fluid velocity for random
viscosity, 2, 4, 6, 8, 10th
orders

Figure 1.
Expected values of fluid
velocity for random
viscosity, 2, 4, 6, 8, 10th
orders
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the 10th order approximation are returned symbolically by MAPLE. For example, in
the present case we obtain

E½uðc;aðmÞÞ� ¼ 0:25
UH

E½m�
þ 5:0c 2a 2ðmÞ þ 15:0c4a 4ðmÞ

þ 75:0c 6a6ðmÞ þ 525:0c 8a8ðmÞ þ 4725:0c10a 10ðmÞ

ð70Þ

and

sðuðc;aðmÞÞÞ ¼ 10caðmÞ þ 8:6602c 2a 2ðmÞ þ 19:3649c 3a 3ðmÞ

þ 51:2348c 4a4ðmÞ þ 153:7043c 5a 5ðmÞ
ð71Þ

The expected values, standard deviations and the coefficients of variation are shown
with respect to perturbation parameter only in Figures 4-9. Here they are computed for
aðmÞ ¼ 0:25 (out of validity range for the 2nd order technique – Figures 4-8) and
aðmÞ ¼ 0:10 (acceptable for the 2nd SFEM, cf. Figures 5-9).

It is evident from these results that the coefficient of variation of the input random
variable is again more influential than the perturbation parameter in so far as the
probabilistic moments and characteristics of the solution vector component are
concerned. The extended 10th order perturbation technique displayed here appears to

Figure 3.
Coefficients of variation of

fluid velocity for random
viscosity, 2, 4, 6, 8, 10th

orders

Figure 4.
Expected values of fluid

velocity for random
viscosity, 2, 4, 6, 8, 10th

orders, aðH Þ ¼ 0:25
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be effective even with 30 percent dispersion of the random input. However, this level of
dispersion is quite unacceptable for the accuracy of the previous 2nd order SFEM.
As shown in Figures 5 and 7, the expected values and standard deviations are almost
insensitive to the perturbation parameter for smaller coefficients of variation. The
significance of this parameter increases with both order of perturbation method and
the coefficient of variation for random input.

Figure 5.
Expected values of fluid
velocity for random
viscosity, 2, 4, 6, 8, 10th
orders, aðH Þ ¼ 0:10

Figure 6.
Standard deviations of
fluid velocity for random
viscosity, 2, 4, 6, 8, 10th
orders, aðH Þ ¼ 0:25

Figure 7.
Standard deviations of
fluid velocity for random
viscosity, 2, 4, 6, 8, 10th
orders, aðH Þ ¼ 0:10
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Further comparing Figure 5 with 7, it is clear that probabilistic convergence for the
expected values is significantly faster than observed for the standard deviations.
As one might infer from asymptotic theory, the influence of the perturbation parameter
increases with the order of the method – the higher the order of the generalized SFEM,
the faster the increase of the results corresponding to greater a(m). These differences
are more apparent in Figure 8. Comparison of Figures 8 and 9 shows that for aðmÞ ¼
0:10 the 2nd order technique is quite satisfactory, while aðmÞ ¼ 0:25 needs an 8th or
10th order expansion for the same tolerance. These differences are more significant for
the 2nd order characteristics, where even for aðmÞ ¼ 0:10 at least a 4th order
perturbation technique would be necessary. Figures 7 and 9 show that standard
deviations and coefficients of variation with c ¼ 1 computed for 2nd order are about
two times smaller than the result obtained for a 10th order expansion. It should also be
remarked here that the convergence of the stochastic perturbation-based Finite
Element Method may be corrected for smaller orders by the appropriate choice of
perturbation parameter c, which needs to be greater than 1 in this case.

4.1.3 Channel width H fluctuations. The analytic solution here is complicated by the
fact that the channel height enters in the denominator. Therefore, for any new random
variable Y ¼ 1=H its expected value does not exist in the general case and may be
evaluated analytically for finite intervals only. However, in the perturbation approach
this difficulty does not arise and instead we can evaluate the expectation directly by

Figure 8.
Coefficients of variation of

fluid velocity for random
viscosity, 2, 4, 6, 8, 10th

orders, aðH Þ ¼ 0:25

Figure 9.
Coefficients of variation of

fluid velocity for random
viscosity, 2, 4, 6, 8, 10th

orders, aðH Þ ¼ 0:10

Fluid flow
problems

689



a formula (25) or (26). Deterministic values are compared here against the 2nd, 3rd,
4th, 5th and 6th order perturbation based approximation of the expected values for
U ¼ 10:0; E½H � ¼ 2:0 and its coefficient of variation equal to 0.1. The perturbation
parameter is again taken as 1. The expected values are collected in Figure 10(a) for
the entire channel height and in Figure 10(b) near the moving plate. This example
with H being random is an interesting test case because there are an infinite number
of nonzero partial derivatives with respect to the random input parameter and
hence each new perturbation order introduces new components into the probabilistic
output.

In the case of a linear or even a polynomial transformation between output and
input, the differences between the results obtained for various perturbation-based
approximations essentially decrease. Furthermore, as expected, the accuracy improves
as the perturbation parameter decreases. Generally, we observe that application of

Figure 10.
(a) Stochastic convergence
of the perturbation method
for random channel
height; and (b) stochastic
convergence of the
perturbation method for
random channel height
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a polynomial transformation can be successful even in the case of a 2nd order
approximation with perturbation parameter equal to 1, whereas in the case of inversion
of the random input (H), the convergence is very slow and that is why reducing the
coefficient c is recommended.

The simple Couette flow form is again considered using the stochastic finite element
approach. This implies that cross-correlations between various elements are equal to
the product of standard deviations of finite elements lengths. The computations are
performed for various coefficients of variations of these lengths varying from 0.05 to
0.15 in increment of 0.01. The results of these finite element computations are shown in
Figure 11 for a discretization that has 20 linear finite elements across the channel.
Computational analysis here is performed using a perturbation-based SFEM program
called RANDFLOW, which is implemented from equation (59) to calculate 0th, 1st and
2nd order fluid velocities and subsequently the relevant expected values and variances.
This program is implemented in such a way that the input random field components
are defined at the finite element midpoints, where the expected values and
cross-correlation matrix components are given as the input. Boundary conditions are
introduced in the following manner: fluid velocity is equal zero at the lower boundary
and the surface traction is f̂ ¼ 0:5 at the upper edge.

The expected values show linear variability with respect to the fluid flow profile.
Comparing the results for various input coefficients of variation it is seen that
parameter variation results in very small changes of the fluid velocity expectations
examined. Essential changes are observed in the case of variances that have parabolic
variability with respect to the varying vertical coordinate. The differences between the
profiles computed for increasing input coefficients of variation also systematically
grow. Further, the system demonstrates a linear behavior in the sense that the input
coefficient of variation is exactly equal to the output one, as seen from the results
collected in Figure 11.

Figure 11.
Variance of velocities in

stochastic 1D flow
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4.2 Pipe with random diameter – validation test
The behavior in pipe flow is analogous to that of the preceding channel flow problem
but is of more general engineering interest. The pipe has the viscous fluid flow through
the pipe with constant diameter D, and constant pressure gradient G, so the velocity
profile is described by the following relation:

u ¼
G

4m

D 2

4
2 r 2

� �
: ð72Þ

The pipe diameter D is taken as input Gaussian random variable given by the first two
moments E[D ] and Var(D). In this particular case of a transformation of the 2nd order
Gaussian random variable we can derive an exact solution using the following
formulas:

E½D 2� ¼ E 2½D� þ VarðDÞ; VarðD 2Þ ¼ VarðDÞð2E 2½D� þ VarðDÞÞ: ð73Þ

Then, an exact solution is obtained for randomized diameter in equation (72) as

E½uð yÞ� ¼
G

4m

E 2½D�

4
2 r 2ð yÞ

� �
; VarðuÞ ¼

G

16�ı

� �2

VarðDÞð2E 2½D� þVarðDÞÞ: ð74Þ

Therefore, a comparison with MCS (treated as numerically exact solution) is not
necessary and terms higher than a 2nd order in the perturbation expansion are equal to
zero. Let us note, moreover, the 2nd order moments are constant along the cross-section
of a pipe. Furthermore, comparison of expected values in equation (74) with (72) shows
that the deterministic value is negligibly smaller than the exact solution for the
expected value and is omitted in numerical comparison as far as deterministic
parameter D is equal to its mean value in statistical measurements. Perturbation based
computational studies are performed using the following data: G ¼ 10; m ¼ 20; D ¼
E½D� ¼ 0:5: The deterministic velocity profile is compared against the
perturbation-based expected value for spatial distribution in Figures 12 and 13
below. The 2nd order perturbation result in Figure 12 is greater than the deterministic
result and exact solution for the probabilistic problem. This follows from the fact that
in the perturbation solution the deterministic value is corrected with the 2nd order
term, which being positive increases the final result. The modeling error as measured
by the difference between the perturbation-based expected value and the deterministic

Figure 12.
Deterministic profile of the
flow through pipe with
constant diameter
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value is constant in the pipe cross-section and is obtained from the MAPLE code as
17.5781 £ 1024 for these data.

The following graph (Figure 14) contains the standard deviations of the velocity
profile for the exact probabilistic solution (dashed line) and for the perturbation-based
formula (solid line). Since the standard deviation of the profile has constant value
independent of r, its variability is considered with respect to input coefficient of
variation of the pipe diameter. As seen in Figure 14, the perturbation solution returns
larger values than the exact solution for any choice of the input coefficient of variation
of random variable D; in both cases the increase of the output standard deviation is
proportional to that of the input parameter results. For input coefficient of variation
equal to 0.10 being an upper bound for the 2nd order applicability, the modeling error
defined as before as the difference between perturbation and exact solutions, is equal
here to 4.5487 £ 1022.

4.3 Potential flow past a cylinder – random radius fluctuations
The next numerical example is for potential flow past a cylinder with random radius
fluctuations and is also solved using the symbolic manipulation capability of
mathematical package MAPLE (Cornil and Testud, 2001). Recall the related classical
wavy wall perturbation problem referred to in the Introduction (Lighthill, 1954).

Figure 13.
Expected value of a profile
for the flow through pipe

with constant diameter

Figure 14.
Standard deviations of a

profile for the flow
through pipe
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The analytical (deterministic) solution for the velocity potential exterior to a cylinder
follows from elementary complex variable theory and is

w ¼ U r þ
a2

r

� �
cos uþ 0:50; ð75Þ

where U is the remote uniform free stream velocity and a is the radius of the cylinder.
In the present work, the original MAPLE script has been extended to include the 2nd
order second moment equation for the probabilistic moments of the input. The
Gaussian input random variable in the computations is the cylinder radius and is
defined using its expected value E[a ] and variance Var(a). The stochastic 2nd order
perturbation algorithm returns the expected values and the variances of the velocity
potential as

E½w� ¼ w 0 þ
1

2
w ð2Þ ¼ U r þ

E 2½a�

r

� �
cos uþ 0:50 þ U

1

r
cos uVarðaÞ; ð76Þ

VarðwÞ ¼
›w

›a

� �2

VarðaÞ ¼ 4U 2 a 2

r 2
cos 2 uVarðaÞ: ð77Þ

These results are now used to compare deterministic streamlines, their expected
values, 1st and 2nd order partial derivatives with respect to random input variable as
well as variances for specific values of uniform velocity U. The expected value of the
cylinder radius is E½a� ¼ 1 and its standard deviation is taken to be 10 percent of the
expectation. The main results are presented graphically as streamline patterns and
their variations in Figure 15 below using the MAPLE visualization tool.

It was verified numerically that deterministic and expected values of the
streamlines obtained for a flow with various speeds are almost identical since the
contributions of the 2nd order terms to the expectation are very small. As presented
next, the 1st and 2nd order partial derivatives of the streamline functions differ from
zero in this particular problem (Figure 15(b)). Since partial derivatives of third and
higher order are equal to zero, computational implementation of higher than the 2nd
order perturbation approach is not necessary in this case. Moreover 1st and 2nd order
components differ here by a constant, so the streamlines for both components are
exactly the same. Because the 2nd order derivatives are nonzero, we can determine the
variances of streamlines, which are computed symbolically for higher flow speeds only
(Figure 15(c)). (In the case of smaller values of the parameter U these variations are
close to zero and, therefore, the automatic resolution of the MAPLE graphic procedures
is too small for reasonable visualization.) In both cases these streamlines show double
– horizontal and vertical symmetry with respect to the axis crossing the cylinder
geometrical center. The streamline variances cover an increasing area of the flow
domain for increasing inlet velocity.

5. Concluding remarks
This paper describes a formulation of the perturbation stochastic second moment
approach for analysis of fluid flow involving random field parameters. Elementary
computational tests for potential flow past a circular cylinder and for the viscous
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Figure 15.
(a) Expectations of

streamlines for U ¼ 2:0;
(b) 1st and 2nd order

streamlines for U ¼ 10:0;
and (c) variance of

streamlines for U ¼ 10
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Couette flow problem with random fluctuations in boundary shape and boundary
conditions are solved to demonstrate the basic ideas and validate against simple
analytic results. As seen from the numerical experiments, implementation of the
stochastic perturbation technique for fluid flow introduces some issues in the SFEM
implementation and further numerical studies are needed to compare probabilistic
moments computed with other stochastic methods. For instance, improved
Monte-Carlo analyses of the same flow problems are desirable to determine the most
efficient perturbation orders for various input and perturbation parameters. This can
be performed using, e.g. the probabilistic module of the commercial FEM package
ANSYS, v. 5.7 or by extension of existing academic flow solvers with computational
random generators and statistical estimators.

In the finite element formulation, the first two probabilistic space and time
characteristics of the problem state functions (e.g. fluid pressure and velocities) are first
computed and the expected values and covariances of the state parameters are then
determined. The equations (66)-(68) are also useful in SFEM-based reliability studies of
fluid-structure interaction problems. In this case, a reliability index can be derived in a
manner similar to that presented in Ghanem and Spanos (1991) using the first order
reliability method (FORM), the second order reliability method (SORM) or in Kamiński
(2001b) for the Weibull second order third moment (W-SOTM) perturbation technique.
Let us note that probabilistic approaches higher than 2nd order for non-Gaussian
random variables should be applied for all those cases, where skewness of the input
random parameters cannot be neglected.

Computational analysis of stochastic sensitivity (Kleiber and Hien, 1992) for the
fluid flow problem can be carried out with respect to physical properties of the fluid as
well as geometrical parameters of the flow. For example, the ideas presented in the
paper may be useful for solution of flow problems involving random perturbations of
fluid suspensions and foams (Carey and Hu, 2005; Carey et al., 1996; Carey and Oden,
1986), where constitutive parameters of both fluid and/or multiphase medium are
random fields (Kamiński, 2001a). In this case, the deterministic characteristic function
is substituted into the derived equations. Random fluctuations due to boundary
bubbles (Boutin and Auriault, 1993) appearing in real fluids, such as those due to
temperature effects near a phase change boundary may be similarly described
stochastically using the first two probabilistic moments with respect to their radii and
the total number in the analyzed region. Finally, in view of recent progress with the
SFEM models in solids (Grigoriu, 2000), the approach appears applicable to analysis of
random uncertainties at interfaces in fluid-solid interaction problems. The probabilistic
moments computed in the manner described here can be used in the stochastic analysis
of reliability problems, where the limit function is defined using actual and allowable
shear stresses induced by a moving fluid on the solid part. Probabilistic moments of
fluid velocities and of pressures would be included in the final formula characterizing
the reliability index.
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